Preliminary results of an in progress, first-in-human Phase 1 study of Decoy20, an intravenous, killed, multiple immune receptor agonist bacterial product in patients with advanced solid tumors

Michael J Newman, PhD¹, Jeffery A Nieves, PharmD¹, Gary B Gordon, MD, PhD¹, Diana L Hanna, MD², Angela T Alistar, MD³, Mohammed N Al Hallak, MD⁴, Roger J Waltzman, MD, MBA¹, (1)Indaptus Therapeutics, Inc., New York, NY, (2)USC Norris Comprehensive Cancer Center, Los Angeles, CA, (3)Atlantic Health System/Morristown Medical Center, Morristown, NJ, (4)Karmanos Cancer Institute, Detroit, MI

SITC 2023 Presentation #782-E

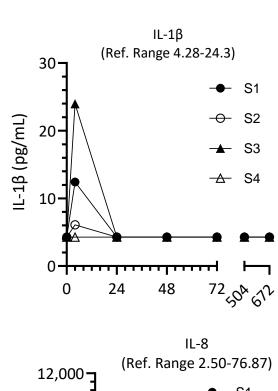
Background

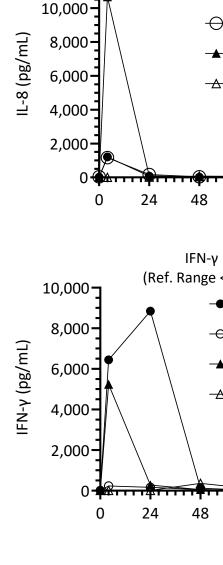
Systemic activation of multiple immune receptors, such as Toll-like (TLR), Nucleotide oligomerization domain (NOD)-like, and Stimulator of interferon genes (STING) may be required for efficient anti-tumor immune responses. Decoy10 and Decoy20 are attenuated and killed, non-pathogenic, bacterial products with ~90% reduction of lipopolysaccharide (LPS)-endotoxin (TLR4 agonist) activity to enhance intravenous (IV) safety, and with retention of endogenous TLR2,8,9, NOD2 and STING agonist activity. Decoy products produced pre-clinical single-agent and/or combination-mediated anti-tumor activity with breast, colorectal, hepatocellular, and pancreatic carcinomas and non-Hodgkin's lymphoma, including innate/adaptive immune-mediated eradication of established tumors with induction of immunological memory. Tumor-eradicating synergy was observed with Decoy products in combination with anti-PD-1, indomethacin, cyclophosphamide and/or rituximab [1]. We hypothesized that, due to clearance of systemic bacteria by the liver and spleen within minutes to a few hours, systemically-administered Decoy products might produce passively targeted, transient immune activation, suitable as monotherapy or combination with approved agents (passively-targeted, pulse-prime hypothesis). Decoy20 was produced from a non-pathogenic K-12 strain of *Escherichia coli* (*E. coli*).

Study Design and Methods

INDP-D101 (NCT05651022) is a first-in-human, open label, single dose escalation and multi-dose expansion, multicenter Phase 1 trial of Decoy20 in patients with advanced/metastatic solid tumors with an initial DLT period of 28 days. Primary objectives: safety/tolerability. Secondary objectives: anti-drug immunogenicity, pharmacokinetics (PK) and preliminary anti-tumor activity. Exploratory objective: systemic immune activation via immune biomarkers. Eligible patients must have measurable tumors relapsed or refractory to standard therapies. Single-Ascending Dose (SAD) cohort evaluations precede Multiple Dose (MD) cohorts and use a standard statistical 3+3 design. The starting dose is a 1-hour i.v. infusion of 7 x 10⁷ killed Decoy20 bacteria and is based on the No Observed Adverse Effect Level in rabbits, the relevant non-clinical toxicology species for LPS. Plasma biomarkers were determined by Meso Scale Discovery Electroluminescence (Figure 1) or Luminex Platform (Figure 2). Decoy20 pharmacokinetics (PK) was determined by a digital drop (dd) PCR method.

Ethics Approval: This study was approved by the following institutions' Ethics Boards: WIRB/Copernicus covering Atlantic and Karmanos with approval number 20223025; USC approval number HS-22-00497

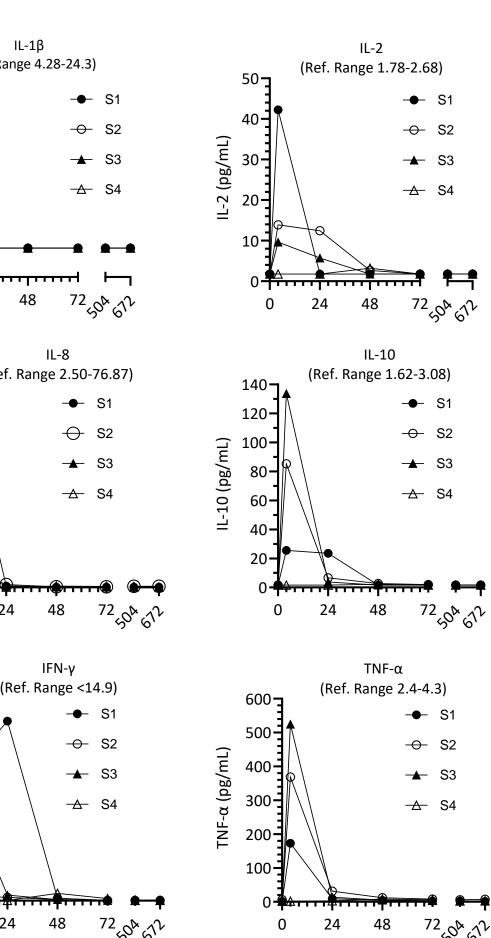

Trial Registration: NCT05651022


Patient and Disease Characteristics

Subject #	Age/Sex	Primary Disease Site	Dominant Sites of Disease	Prior Systemic Therapy		
1	45, F	Tongue Adenoid Cystic CA	Floor of mouth and neck recurrences, measurable lung metastases	Lenvatinib		
2	71, M	Piriform sinus squamous cell CA	Lung metastases, mediastinal lymphadenopathy	5-FU / Carboplatin/ Docetaxel; Cetuximab; Pembrolizumab; Pembrolizumab/ Trastuzumab; DF1001/Nab-Paclitaxel		
3	48, M	Appendiceal adeno CA	Peritoneal carcinomatosis with intra-abdominal masses	FOLFOX; FOLFIRI + Bevacizumab; Q702- ONC-P1-US001 Clinical Trial; VMO-01C Clinical Trial		
4	47, M	Colon CA (MSS)	Lung metastases	FOLFOX; FOLFIRI + Bevacizumab		

Table 1 (right). Treatment-Related Adverse **Events.** One dose limiting toxicity of Grade (G) 3 bradycardia occurred and resolved in <30 minutes following bolus normal saline, acetaminophen, meperidine, and oxygen; G3 malaise in the same patient resolved within 2 days. Two patients experienced G3 AST increase, improving to G1 within 1-2 days. Overall, G1 chills, fatigue, fever, G2 vomiting, hypotension, G1-2 ALT increase resolved within 1-2 days and G4 lymphopenia resolved within 2-3 days, all potentially expected following exposure to LPS (TLR4 agonist), an active ingredient of Decoy20 [2,3].

Figure 1 (below). Decoy20 induces transient plasma cytokine, chemokine and biomarker **expression.** Analysis was carried out at pre-dose, 4, 24, 48, 72 hr, 3 weeks (504 hr) and 4 weeks (672 hr) after end of infusion. Peak cytokine and chemokine induction occurred within ~4 to 24 hours and returned to baseline by 24-48 hours. Soluble IL-2 receptor (sIL-2r), a marker of T cell activation, peaked at ~24 hours and remained elevated up to at least 72 hours. Reference ranges (healthy volunteers, pg/mL or Units/mL) are provided. Most baseline measurements reflect lower limits of assay quantitation.



Results (Safety and Plasma Biomarkers)

	INDP-D101 Cohort # / Subject #					
Post-Dose Adverse Event	1/1	1/2	1/3	1/4		
-	Grade					
Alkaline Phosphatase Increased		G1				
ALT Increased		G1	G2			
Anorexia	G1	G1				
AST Increased		G3	G3			
Bloating			G1			
Bradycardia				G3		
Chills	G1		G1			
Constipation	G2					
Creatinine Increased		G1				
Edema						
Fatigue	G1	G1				
Fever			G1	G1		
Headache			G1	G2		
Hemoptysis				G1		
Herpes simplex reactivation			G2			
Hot Flashes	G1					
Hypercalcemia		G2				
Hypomagnesemia	G1					
Hypophosphatemia	G2			G2		
Hypotension	G2			G2		
Infusion-Related Reaction (IRR)		G2		G3 ¹		
Lymphopenia	G4	G4	G4	G4		
Malaise				G3		
Myalgia						
Nausea	G1			G1		
Paresthesia, Intermittent	G1					
Rigors				G2		
Tachycardia			G1			
Vomiting	G2		G2			

SAE due to requirement for hospitalization Note: Data are from an open database and are subject to change

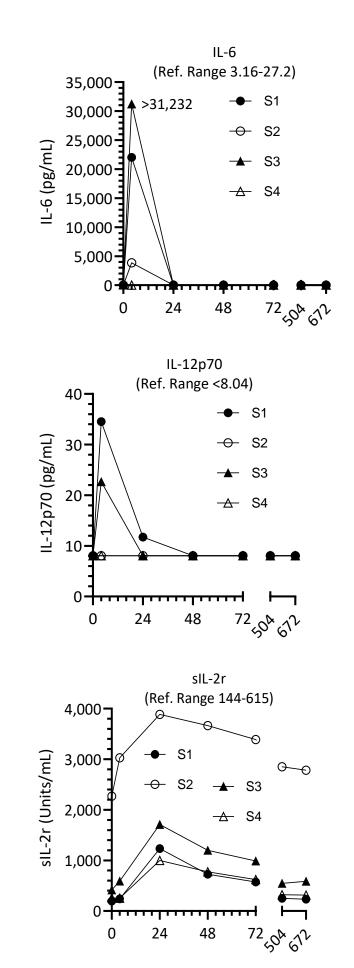
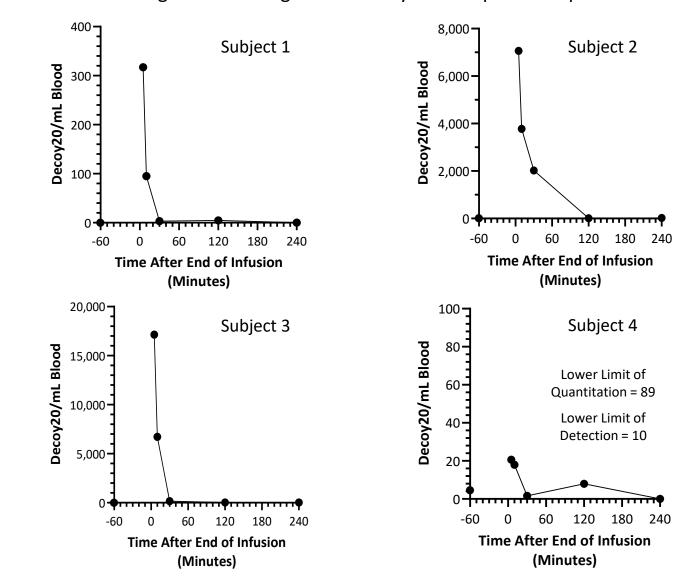


Table 2. Expanded single time-point plasma cytokine, chemokine and biomarker analysis. Luminex analysis was carried out at pre-dose, 0.5, 1, 2, 4, 6, 24, 48, 72 hr, and 4 weeks after end of infusion. Most induced analytes peaked within 2-4 hr and resolved within 24-48 hours. Data in Table represent the maximum fold induction or reduction.

	Subject					Subject				
	1	2	3	4	_	1	2	3	4	
	Maxi	mum Fold In	duction ≥	4-Fold	_	Maximum Fold Induction ≥4-fold				
Biomarker	or Fold Reduction ≥4-Fold				Biomarker	or Fold Reduction ≥4-Fold				
April	5			5	IL-16		5 reduced		5	
BAFF	10	4			IL-17a (CTLA-8)					
BLC (CXCL13)	6	4 reduced		8	IL-18	8	4			
CD30				4	IL-20					
CD40L (CD154)	6				IL-21			7		
CRP					IL-22					
ENA-78 (CXCL5)			5		IL-23					
Eotaxin (CCL11)	9		7	6	IL-27	32		15		
Eotaxin-2 (CCL24)		5 reduced			IL-31	14			9	
Eotaxin-3 (CCL26)					IL-33					
Ferritin	6				LIF	6		44		
FGF-2					IP-10 (CXCL10)	28		28	28	
Fractalkine (CX3CL1)		6			I-TAC (CXCL11)	24	5	14	17	
G-CSF (CSF-3)	18		67	9	MCP-1 (CCL2)	40	19	22	51	
GM-CSF				5	MCP-2 (CCL8)	15		10	25	
Gro-alpha (CXCL1)	4	15	43	6	MCP-3 (CCL7)	4				
HGF	8		63	21	MCP-4 (CCL13)	6	7	11		
IFN-alpha					M-CSF		9			
IFN-beta			4		MDC (CCL22)					
IFN-gamma	27	(16)	(352)	18	MIF		8 reduced		18	
IL-1-alpha	7	17	5	5	MIG (CXCL9)	42		6	24	
IL-1-beta	23	5	6	10	MIP-1a (CCL3)	22		34	27	
IL-1ra (IL-1F3)	1,216	833	AP	AP	MIP-1b (CCL4)	36	25	253	47	
IL-2	(24)	(8)	(5)		MIP-3a (CCL20)	25	25	92	78	
sIL-2r	133		5	120	MMP-1					
IL-3					NGF-beta	6				
IL-4	(12)		4	5	SCF			6	4	
IL-5					SDF-1a (CXCL12)	5			9	
IL-6	83	5	71	39	TARC (CCL17)	7		25		
IL-7					TNF-alpha	17	18	95	(5)	
IL-8 (CXCL8)	31	(33)	31	24	TNF-beta				6	
IL-9	6	13			TNF-RII	5			11	
IL-10	(15)	6	13	6	TRAIL (CD253)		6	8	7	
IL-12p40			7		TWEAK					
IL-12p70	6				TSLP	4		25	4	
IL-13					VEGF-A	38		6	23	
IL-15										

No data entry indicates no induction \geq 4-fold AP = Analysis Pending


Table 3. Cytokines and chemokines associated with innate and adaptive anti-tumor immune responses (not exhaustive). Most cytokines and chemokines have been shown to play a positive role in immune responses, but can also produce toxicity if present at abnormally high levels for extended periods. A single dose of i.v. Decoy20 produced transient ≥4-fold induction of the cytokines and chemokines highlighted in yellow in the Table.

Cytokines and Chemokines Inducing Migration, Activation, Maturation and/or Proliferation of Immune Cells	Responsive Immune Cell Type: All Participate in Anti-Tumor Immune Responses
<mark>GM-CSF</mark> , <mark>IL-1β</mark> , <mark>IL-4</mark> , <mark>IL-12</mark> , IL-15, IFN-αβ, <mark>IFN-γ</mark>	Dendritic Cells
<mark>IL-2</mark> , <mark>IL-12</mark> , <mark>IL-18</mark> , TNF-α	Gamma-Delta (γδ) T-Cells
<mark>IL-1β</mark> , <mark>IL-8</mark> , IFN-αβ, <mark>IFN-γ</mark> , <mark>MIP-1α</mark> , <mark>TNF-α</mark>	M1 Macrophage
<mark>IL-2</mark> , <mark>IL-10</mark> , <mark>IL-12</mark> , IL-15, <mark>IL-18</mark> , <mark>IL-21</mark> , IFN-αβ, <mark>IFN-γ</mark>	NK Cells
<mark>IL-12</mark> , <mark>IL-18</mark> , <mark>IL-21</mark> , IFN-αβ, <mark>IFN-γ</mark>	NKT Cells
<mark>GM-CSF</mark> , IFN-αβ, <mark>IL-4</mark> , <mark>IL-8</mark> , <mark>MIP-1α</mark> , <mark>TNF-α</mark>	Neutrophils
<mark>GM-CSF</mark> , <mark>IL-1β</mark> , <mark>IL-2</mark> , IL-5, <mark>IL-6</mark> , IL-7, <mark>IL-8</mark> , <mark>IL-9</mark> , IL-10, IL-12, IL-15, IL-18, IL-21, IFN-αβ, IFN-γ, MIP-1α, TNF-α, TNF-β	T-Cells (Th1, Th17 or Th2 CD4+ or CD8+) Including CIK, CTL, LAK

Results (Plasma Biomarkers)

Values in parenthesis from Meso Scale Discovery Electrochemiluminescence panel

Figure 2. Pharmacokinetic analysis confirms rapid clearance of systemically-administered Decoy20. A ddPCR method with lower limit of detection/quantitation of 10/89 Decov20 bacteria per mL blood was developed and used to determine Decoy20 levels in Subject blood pre-dose and 5, 10, 30, 120, 240 minutes, 24 hr, and 4 weeks after the end of the infusion. Decoy20 was cleared from blood within 30 to 120 minutes after the end of the infusion. Due to peak concentration within 5 minutes of end of infusion and the steep elimination slope, differences in peak height between subjects may reflect slight differences in clearance time during infusion. Additional time-points will be required to determine if there is also significant biological variability with respect to exposure.

Results (Preliminary Activity)

Post-dose tumor re-staging at 4 weeks demonstrated stable disease by RECIST 1.1 in all 4 subjects. Three of the subjects had progressive disease prior to Decoy20 administration.

Discussion and Conclusions

A single i.v. dose of Decoy20 was cleared from blood within 30-120 minutes and produced transient induction in plasma of over 50 biomarkers, many of which have been associated with stimulation of innate and/or adaptive immune responses.

Blood immune cell profiling demonstrated a rapid increase in neutrophils, and rapid decrease in essentially all other leukocytes, with recovery of all cell types within approximately 72 hours, suggesting that Decoy20 induces a transient, but significant leukocyte trafficking or re-distribution event (data not shown).

Despite the presence of agonists for TLR2,4,8,9, NOD2 and STING and other molecules associated with intact bacteria, the safety profile of Decoy20 was largely as expected for i.v. administration of purified LPS-endotoxin, based on published clinical experience [2,3]. Adverse effects were generally tolerable and resolved with or without treatment within 30 minutes to 3 days.

Administration of a single dose of Decoy20 produced initial stable disease in all 4 subjects, including 3 progressing prior to Decoy20 administration.

The results are supportive of our passively-targeted, pulse-prime hypothesis.

A second part of the study will enroll subjects to receive multi-dosing of Decoy20.

1. Newman M. A systemically administered killed bacteria-based multiple immune receptor agonist for pulsed antitumor immunotherapy. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7 Suppl):Abstract nr 4165.

2. Engelhardt R, Mackensen A, Galanos C. Phase 1 trial of intravenously administered endotoxin (*Salmonella abortus equi*) in cancer patients. Cancer Res. 1991; 51:2524-2530. 3. Bahador M, Cross A. From therapy to experimental model: a hundred years of endotoxin administration to human subjects. J Endotoxin Res. 2007; 13:251-279.

Do Not Post

Results (Pharmacokinetics)

References